Polygonal Clustering Analysis Using Multilevel Graph-Partition
نویسندگان
چکیده
Existing methods of spatial data clustering have focused on point data, whose similarity can be easily defined. Due to the complex shapes and alignments of polygons, the similarity between non-overlapping polygons is important to cluster polygons. This study attempts to present an efficient method to discover clustering patterns of polygons by incorporating spatial cognition principles and multilevel graph partition. Based on spatial cognition on spatial similarity of polygons, four new similarity criteria (i.e. the distance, connectivity, size and shape) are developed to measure the similarity between polygons, and used to visually distinguish those polygons belonging to the same clusters from those to different clusters. The clustering method with multilevel graph-partition first coarsens the graph of polygons at multiple levels, using the four defined similarities to find clusters with maximum similarity among polygons in the same clusters, then refines the obtained clusters by keeping minimum similarity between different clusters. The presented method is a general algorithm for discovering clustering patterns of polygons and can satisfy various demands by changing the weights of distance, connectivity, size and shape in spatial similarity. The presented method is tested by clustering residential areas and buildings, and the results demonstrate its usefulness and universality.
منابع مشابه
A partition-based algorithm for clustering large-scale software systems
Clustering techniques are used to extract the structure of software for understanding, maintaining, and refactoring. In the literature, most of the proposed approaches for software clustering are divided into hierarchical algorithms and search-based techniques. In the former, clustering is a process of merging (splitting) similar (non-similar) clusters. These techniques suffered from the drawba...
متن کاملPartitioning Complex Networks via Size-Constrained Clustering
The most commonly used method to tackle the graph partitioning problem in practice is the multilevel approach. During a coarsening phase, a multilevel graph partitioning algorithm reduces the graph size by iteratively contracting nodes and edges until the graph is small enough to be partitioned by some other algorithm. A partition of the input graph is then constructed by successively transferr...
متن کاملAnalysis of multilevel graph partition algorithm Class Project - Algorithm
All the recent available graph partitioning packages include the multilevel graph partition algorithm in which the graph is coarsened by a sequence of increasingly smaller graphs. The smallest graph is partitioned using a graph partitioning algorithm and this partition is propagated back through the hierarchy of graphs. A Kernighan –Lin algorithm is applied periodically to refine the partition....
متن کاملA Scalable Multilevel Algorithm for Graph Clustering and Community Structure Detection
One of the most useful measures of cluster quality is the modularity of the partition, which measures the difference between the number of the edges joining vertices from the same cluster and the expected number of such edges in a random (unstructured) graph. In this paper we show that the problem of finding a partition maximizing the modularity of a given graph G can be reduced to a minimum we...
متن کاملA Hybrid Multilevel/genetic Approach for Circuit Partitioning
We present a genetic circuit partitioning algorithm that integrates the Metis graph partitioning package [15] originally designed for sparse matrix computations. Metis is an extremely fast iterative partitioner that uses multilevel clustering. We have adapted Metis to partition circuit netlists, and have applied a genetic technique that uses previous Metis solutions to help construct new Metis ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Trans. GIS
دوره 19 شماره
صفحات -
تاریخ انتشار 2015